
A crash course in Matlab

Pablo Garcia

Fall, 2023



What is Matlab?

▶ MATLAB: Short for MATrix LABoratory.

▶ A high-performance numerical computing environment.
▶ Key Features:

▶ Matrix-based language for efficient mathematical operations.
▶ Powerful tools for data analysis, visualization, and algorithm

development.
▶ Extensive library of pre-built functions for various domains.

▶ Widely used in engineering, science, finance, and academia.

▶ Designed for ease of use.



Matrices and Arrays



Matrices and Arrays

▶ Matrices and arrays are fundamental data structures.

▶ A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; creates a 3x3 matrix.

▶ B = zeros(2, 3); creates a 2x3 matrix of zeros.

▶ C = ones(4, 2); creates a 4x2 matrix of ones.

▶ D = eye(3); creates a 3x3 identity matrix.



Matrices and Arrays

▶ Concatenate matrices:
▶ Horizontal concatenation: D = [A, B];
▶ Vertical concatenation: E = [A; C];

▶ Access elements using indices:
▶ Single element: A(2, 3) gives the element in the second row

and third column.
▶ Entire row: row 2 = A(2, :);
▶ Entire column: col 3 = A(:, 3);



Examples of Matrix Operations

▶ Example 1: Creating a Matrix
▶ A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

▶ Example 2: Matrix Multiplication
▶ B = A * C;

▶ Example 3: Element-wise Operations
▶ D = A .* E;

▶ Example 4: Transposition
▶ F = A’; or F = transpose(A);

▶ Example 5: Addition
▶ C = A + B; and D = A + 5;



Calling bult-in functions



Calling Functions

▶ MATLAB provides built-in functions for various operations.
▶ Common functions include:

▶ [max value, max index] = max(matrix): Returns the
maximum element and its index in the matrix.

▶ [min value, min index] = min(matrix): Returns the
minimum element and its index in the matrix.

▶ mean(matrix, 1): Calculates the mean along each column of
the matrix.

▶ std(matrix, 0, 2): Computes the standard deviation along
each row of the matrix.

▶ rand(m, n): Creates a matrix of random values uniformly
distributed in the interval (0, 1).

▶ randn(m, n): Generates a matrix of random values from a
standard normal distribution.



Solving Linear Systems



Solving Linear Systems

▶ Consider the system of linear equations:

2x + 3y = 8

4x − 2y = 6

▶ To solve for x and y , use the \ operator:

A = [2 3; 4 -2];

B = [8; 6];

X = A \ B;

▶ The solution is stored in matrix X .

▶ Less efficient way: X = inv(A) ∗ B;



Finding Eigen-things



Eigenvalues and Eigenvectors

Definition: For a square matrix A, a scalar λ is an eigenvalue and
a non-zero vector v is an eigenvector if Av = λv.

▶ Eigenvalues: Computed using eig(A).

▶ Eigenvectors: Computed using [V, D] = eig(A).

▶ Example:

A = [2 1; 1 3];

[V, D] = eig(A);

eigenvalues = diag(D);

eigenvector1 = V(:, 1);

eigenvector2 = V(:, 2);

▶ Check that A ∗V (:, 1) is (almost) identical to D(1, 1) ∗V (:, 1)



Generating Random Numbers



Normal Distribution and Histogram

% Generate 10,000 random samples from a normal distribution

X = normrnd(0,1,[100000,1]);

% Plot histogram

figure;

histogram(X, ’Normalization’, ’probability’);

title(’Histogram of random samples from a normal distribution’);

xlabel(’Value’);

ylabel(’Probability’);

▶ Other Distributions: You can also draw random numbers from other
common distributions, e.g., rand(100000,1) for a uniform distribution
and exprnd(1,[100000,1]) for an exponential distribution.



Optimisation



Optimization in MATLAB

▶ MATLAB provides a rich set of built-in functions for
optimisation.

▶ These functions cater to various types of optimisation
problems; e.g. constrained/unconstrained problems,
univariate/multivariate problems...

▶ MATLAB’s optimisation functions are carefully implemented
and optimised. Use them whenever possible; chances are that
your own optimisation routines are not as efficient.



Univariate Optimization: fminbnd
▶ The fminbnd function is used for univariate minimization on a

bounded interval.

▶ Example: Minimize f (x) = x2 + x on the interval [a, b].

% Define the objective function

f = @(x) x^2 + x;

% Set the interval [a, b]

a = -2;

b = 2;

% Use fminbnd for optimization

x_m = fminbnd(f, a, b);

% Display the result

fprintf(’Minimum value found at x = %.4f\n’, x_m);

▶ Check that xm satisfies f ′(x) = 0.



fminsearch: Unconstrained Optimization

▶ fminsearch performs unconstrained minimization of a scalar
function of one or more variables.

▶ Example: Minimize f (x) = x2 + x .

% Define the function

f = @(x) x.^2 + x;

% Use fminsearch for optimization

x_m = fminsearch(@(x) f(x), 0);

% Display the minimum found

fprintf(’Minimum found at x = %.4f\n’, x_m);



fminsearch: Local Minima

▶ fminsearch might not find the global minimum if the
function has multiple minima.

▶ Consider f = x4 − x2

▶ Running xmin = fminsearch(@(x) f(x), -8) yields
xmin = −0.7071

▶ But running xmin = fminsearch(@(x) f(x), 8) yields
xmin = 0.7071

▶ The function has two local minima, and the initial guess
determines which one you land in.

▶ This problem occurs with all optimization algorithms.

▶ Take-away: You must understand the mathematical structure
of your problem before coding it. The computer will always
provide results; you must be able to judge whether they are
valid.



Grid Search for Initial Condition

▶ We’ve just seen that finding a good initial condition is crucial
for optimisation.

▶ A simple grid search can help identify a reasonable starting
point.

▶ Consider f (x) = (x − 0.1)4 − x2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5



Grid Search for Initial Condition

▶ We want to make sure that we don’t get stuck at the local
minima around -0.6

▶ A simple grid search can help identify a reasonable starting
point.

▶ Define a grid of values: xgrid = [−1 : 0.1 : 1]

▶ Evaluate the objective function: fgrid = f (xgrid)

▶ Select the initial guess with the lowest fgrid as the starting
point for the optimisation algorithm.



Grid Search: Example

% Grid search for initial condition

x_grid = linspace(-1, 1, 100);

f_values = (x_grid - 0.1).^4 - x_grid.^2;

[min_value, min_index] = min(f_values);

in_con = x_grid(min_index);

% Use initial_condition in optimisation algorithm

result = fminsearch(@(x) (x-0.1)^4 - x^2, in_con);

▶ Note: For this simple example, a grid search is not needed,
but it becomes extremely useful for more complex problems,
especially in higher dimensions.



fmincon: Constrained Optimization

▶ fmincon is designed for constrained optimisation problems,
including both equality and inequality constraints.

▶ Check the Matlab website for a detailed description and many
examples

▶ From personal experience: understand the structure of your
problem when using fmincon!

▶ Back to previous example, but adding a nonlinear constraint:

▶ Objective Function: f (x) = (x − 0.1)4 − x2

▶ Nonlinear constraint: x + 0.5 ≤ 0

▶ Optimization Goal: Minimize f (x) subject to the given
constraints.

▶ Note that the global minimum 0.8 does not satisfy the
constraint. Hopefully, fmincon will guide us to the local
minima.



fmincon: Example

% Define the objective function

objective = @(x) (x-0.1)^4 - x^2;

% Set up the options and initial guess

options = optimoptions(’fmincon’, ’Display’, ’iter’);

x0 = 0;

% Run fmincon

x_mc = fmincon(objective, x0,1,-0.5,[],[],[],[],[],options);

▶ As expected, fmincon guides us to the local minima: xmc = −0.55.

▶ This is a very simple example, fmincon can address all types of linear and
nonlinear constraints.



Derivatives and Integrals



Computing Integrals in MATLAB

▶ MATLAB provides the integral function for numerical
integration.

▶ Syntax: q = integral(fun, xmin, xmax)

% Example: Integrate the function

% f(x) = x^2 over [0, 1]

fun = @(x) x.^2;

xmin = 0;

xmax = 1;

q = integral(fun, xmin, xmax);

▶ The result q is an approximation of the integral of f (x) over
the specified interval.

▶ Check that the numerical results is (almost) identical to the
analytical one: 1/3.



Forward Derivative

▶ Forward Derivative: The forward derivative at a point x is
approximated by:

f ′(x) ≈ f (x + h)− f (x)

h

where h is a small interval in the positive direction.

▶ diff Function: computes forward differences.

▶ Note: the central derivative is often more accurate:

f ′(x) ≈ f (x + h)− f (x − h)

2h



Forward Derivative: Example

▶ Suppose we have a function f (x) = x2. We can use diff to
approximate the derivative at each point.

% Define domain and function

x = linspace(0, 1, 100);

y = x.^2;

h = diff(x);

% Compute forward differences

dy_dx_approx = diff(y) ./ h;

▶ Check that the result is (almost) identical to f ′(x) = 2x



Forward Derivative: Example

▶ With h = 0.001, the approximation is great.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Forward approximation

Analytical derivative

▶ Check that as h becomes larger, the approximation
deteriorates.



A Piece of Advice

▶ Numerical integration and differentiation serve as valuable
tools to validate analytical computations.

▶ When I have to analytically integrate or differentiate an ugly
function F (x), I often do so numerically and cross-check with
my analytical solution.

▶ If numerical and analytical results don’t align, it always means
I’ve done a mistake somewhere in my analytical computations.
(So far, MATLAB has never been wrong.)



Loops



Loops in MATLAB

▶ Loops are structures that allow the repetition of a set of
instructions. They are used to execute a block of code
multiple times.

▶ Loops:
▶ Efficiently handle repetitive tasks.
▶ Reduce code redundancy.

▶ Common types of loops:
▶ for loop: Executes a block of code a specific number of times.
▶ while loop: Repeats a block of code as long as a specified

condition is true.

▶ Key Concepts:
▶ Iteration: Each execution of the loop is called an iteration.
▶ Loop Control: Conditions control when a loop starts and

stops.



The for Loop in MATLAB

▶ The for loop repeats a set of statements a fixed number of
times.

▶ Basic Syntax:

for variable = range

% Code to be executed in each iteration

end

▶ Example:

for i = 1:5

disp([’Iteration ’, num2str(i)]);

end

▶ This loop will iterate five times, displaying the iteration
number in each run.



Example: Forward Difference Using for Loop

% Define the function

f = @(x) x.^2;

% Set up parameters

x_values = linspace(0, 5, 10000);

h = x_values(2)-x_values(1);

% Initialize an array to store differences

forward_diff = zeros(size(x_values)-1);

% Compute forward differences

for i = 2:length(x_values)

forward_diff(i-1) = (f(x_values(i)) - f(x_values(i-1))) / h;

end

% Plot the results

figure;

plot(x_values(2:end), forward_diff, ’b’, ’LineWidth’, 1.5);

title(’Forward Difference of x^2’);

Note: Using loops for operations that can be ’vectorised’ is not efficient.



While Loop

▶ The while loop repeatedly executes a block of code as long as
a specified condition is true.

% Example of a while loop

counter = 1;

while counter <= 5

disp([’Iteration ’, num2str(counter)]);

counter = counter + 1;

end

▶ This loop will iterate five times, printing the current iteration
number in each iteration.



A real example (only for those interested, not
needed for the course)



Setup
▶ Consider the following equation

∂V (t, x)

∂t
=

∂2V (t, x)

∂x2
,

subject to the initial condition

f (0, x) =

{
2x if 0 < x < 0.5

2(1− x) if 0.5 < x < 1,

and the boundary condition

V (t, 0) = V (t, 1) = 0.

▶ This is actually the heat equation. But solving many
macroeconomic models in continuous time boil down to
solving slightly more difficult versions of it. The most famous
example is the Black-Scholes equation. Heterogeneous agent
models are also common examples.



Solution

▶ Create a grid for t and for x . Let dt and dx the distance
between grid points along each dimension.

▶ Approximating the derivative with respect to t by a forward
approximation and the second derivative with respect to x by

∂2V (t, x)

∂x2
=

V (t, x + dx)− 2V (t, x) + V (t, x − dx)

(dx2)

yields:

V (t + dt, x)

dt
=

V (t, x + dx)− 2V (t, x) + V (t, x − dx)

dx2
.



Solution

▶ Rearranging terms:

V (t+dt, x) = ρV (t, x−dx)+(1−2ρ)V (t, x)+ρV (t, x+dx),

where ρ = dt
dx2

.

▶ Starting from the initial condition t = 0, we simply solve the
above equation for increasing values of t = 1, 2, ...

▶ This method is known as finite differences. Any good
reference in partial differential equations will provide a
detailed description.

▶ The next slides provide the code.

▶ In sum, tackling complex problems doesn’t always require
being an expert in Matlab; patience and creativity can take
you a long way.



Numerical solution of the heat equation

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1
V(0,x)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1
V(0.01,x)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1
V(0.05,x)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1
V(0.1,x)



Heat Equation Solution - Part 1

% Inputs

dx = 0.1;

dt = 0.001;

T = dt*100;

X = 1;

rho = dt/(dx^2);

% Grid

x_gr = 0:dx:X;

t_gr = 0:dt:T;

% Value function

v = zeros(numel(x_gr),numel(t_gr));



Heat Equation Solution - Part 2

% Initial conditions

for i = 1:numel(x_gr)

x = x_gr(i);

if x < 0.5

v(i,1) = 2*x;

else

v(i,1) = 2*(1-x);

end

end

% Explicit finite differences

for j = 1:numel(t_gr)-1

for i = 2:numel(x_gr)-1

v(i,j+1) = rho * v(i-1,j) + (1-2*rho)*v(i,j) ...

+ rho * v(i+1,j);

end

end



Heat Equation Solution - Part 3

% Plot function at different times

figure;

subplot (2,2,1) ;

plot(x_gr,v(:,1))

title(’V(0,x)’)

axis([0 1 0 1])

subplot(2,2,2);

plot(x_gr,v(:,11))

title(’V(0.01,x)’)

axis([0 1 0 1])

subplot(2,2,3);

plot(x_gr,v(:,51))

title(’V(0.05,x)’)

axis([0 1 0 1])

subplot(2,2,4);

plot(x_gr,v(:,101))

title(’V(0.1,x)’)

axis([0 1 0 1])


